kunz VEX Wrangle Snippets

VEX Wrangle Snippets

From kunz
Revision as of 16:56, 4 July 2023 by Admin (talk | contribs) (→‎Taper)

Translate

Offset the position of geometry

@P += {0, 0.5, 0.75};


Taper

taper vex 001.gif


Reduces the circumference by scaling gradually over the height of the geometry.




taper_vex_001.hiplc

float taper = relbbox(0,@P).y;
// Remap the taper range
taper = fit01(taper, 1, fit01(sin(@Time*PI/5)*0.5+0.5, 2.5, .5));
// Apply the taper by scaling along the X and Y axis
@P *= set(taper,1,taper);

Boxify

Distorts the geometry into a box shape

vector centroid = getbbox_center(0);
vector size = getbbox_size(0);
size = min(size); // Largest component
@P -= centroid;
@P *= (1.0/size);
@P = lerp(@P, @P+clamp(normalize(@P)*1.75,vector(-1),vector(1)) * (1.0-length(max(abs(@P)))), chf('blend'));
@P *= size;
@P += centroid;

Spherify

Distorts the geometry into a sphere shape Spherify.gif

vector centroid = getbbox_center(0);
vector size = getbbox_size(0);
size = min(size); // Largest component
@P -= centroid;
@P *= (1.0/size);
@P = lerp(@P, normalize(@P), chf('blend'));
@P *= size;
@P += centroid;

Stretch

Stretch the geometry across an axis

@P.x += sign(@P.x);

Shape Blending

Blend between two point positions

@P = lerp(@P, @opinput1_P, chf('blend'));

Snap to Grid

Snap (quantize) point positions to a grid for a downres effect

float grid_scale = chf('grid_scale'); // try 8
@P = rint(@P*grid_scale)/grid_scale;

Swizzle Coordinate System

Switch between Y up and Z up coordinates using swizzle

@P = @P.xzy * set(-1,1,1);

Twist

Twirl the geometry around the Y axis

float angle = chf('angle');
vector origin = set(0,0,0);

vector d = v@P*set(1,0,1) - origin;
float r = length(d);
r = pow(r, chf('pow'));
float beta = atan(d.x, d.z) + radians(angle) * r;
v@P = origin + r * set(sin(beta), 0, cos(beta)) + set(0,@P.y,0);

alt

float angle = @P.y*900;
vector origin = set(0,0,0);

vector d = v@P*set(1,0,1) - origin;
float r = length(d);
float beta = atan(d.x, d.z) + radians(angle);
v@P = origin + r * set(sin(beta), 0, cos(beta)) + set(0,@P.y,0);

alt

float a = chf('angle') * length(@P * {1, 0, 1});
vector pos = @P;
pos.x = (@P.x * cos(a)) - (@P.z * sin(a));
pos.y = @P.y;
pos.z = (@P.x * sin(a)) + (@P.z * cos(a));
@P = pos;
float a = chf('angle') * length(@P * {1, 0, 1});
@P = set( (@P.x * cos(a)) - (@P.z * sin(a)), @P.y, (@P.x * sin(a)) + (@P.z * cos(a)) );
float a = chf('angle') * length(@P * {1, 0, 1});
vector pos = @P;
float u = atan2(pos.x, pos.z);
float r = length(pos * {1, 0, 1});
pos = set(sin(u-a), pos.y, cos(u-a)) * r;
pos.y = @P.y;
@P = pos;
float a = chf('angle') * length(@P * {1, 0, 1});
float u = atan2(@P.x, @P.z);
float r = length(@P * {1, 0, 1});
@P = set(sin(u-a), @P.y, cos(u-a)) * r;

Peak

Moves the mesh along it's surface normals

@P += normalize(@P) * chf('scale');

Exploded View

Moves each packed piece outward from the geometry centroid

@P += (@P - getbbox_center(0)) * chf('scale');

Point Jitter

Jitter each point by a random spherical direction

@P += sample_sphere_uniform(rand(@elemnum+chf('seed'))) * chf('scale');

Plexus Effect

Connect nearby points

foreach(int pt; nearpoints(0, @P, 0.5, 250))    {
    if(pt > @ptnum)
        addprim(0, 'polyline', @ptnum, pt);
}

Connect to Nearest Point

Draw a line to the closest point of the second input

addprim(0, 'polyline', @ptnum, addpoint(0, vector(point(1,'P',nearpoint(1,@P)))) );

Connect to Closest Surface Position

Draw a line to the closest surface position

addprim(0, 'polyline', @ptnum, addpoint(0, minpos(1,@P) );

Randomize the Rotation of Packed Primitives

Update the transform intrinsic to a random orientation

vector r = sample_direction_uniform(rand(@primnum));
matrix3 x = primintrinsic(0,'transform',i@primnum);
rotate(x, PI*pow(rand(@primnum-666),0.5), r);
setprimintrinsic(0,'transform',i@primnum,x);

Randomize the Scale of Packed Primitives

Update the transform intrinsic to a apply a random scale

vector s = rand(i@primnum);
s = s.yyy;  // Uniform Scale
matrix3 x = primintrinsic(0,'transform',i@primnum);
scale(x, s);
setprimintrinsic(0,'transform',i@primnum,x);

Random Color from Normal Direction

Generate random colors based on the surface normal, adjust the multiplier to control the amount of colors

v@Cd = rand(rint(v@N*8));

Iterative Face Insetting

Recursive divide and inset edges, via @d_gfx, excellent use of arrays

int pts[] = primpoints(0,@primnum); vector pos[];
int edge_div_pts[]; vector edge_div_pos[];
foreach( int pt; pts ) 
    append(pos, vector(point(0,'P',pt)));
for( int i = 0; i < chi('iterations'); i++ )    {
    resize(edge_div_pts,0); // empty
    resize(edge_div_pos,0); // empty
    for( int j = 0; j < len(pts); j++ ) {
        append(edge_div_pos, lerp( pos[j], pos[(j+1)%len(pts)], chf('div_ratio') ));
        append(edge_div_pts, addpoint(0, edge_div_pos[-1])); // [-1] grabs the last item from an array
    }
    for (int k = 0; k < len(pts); k++ ) {
        addprim(0, 'poly', pts[k], edge_div_pts[k], edge_div_pts[(k+2)%len(pts)]);
    }
    pts = edge_div_pts;
    pos = edge_div_pos;
}
addprim(0, 'poly', edge_div_pts);
removeprim(0,@primnum,1); // Remove the input prim and any points belonging to it

Iridescent Color Function

Produce an iridescent color ramp from any varying value, from shadertoy

float amt = dot(@N, set(0,1,0))*0.5+0.5;
v@Cd =  (0.5 + 0.5 * cos( PI*2*( amt + set(0,1,2)/3) ) );

Rainbow Cycle with frac function

rainbow cycle w frac VEX.gif


Using the frac function, you can cycle through a rainbow over a desired amount of elements.

This is then offset by adding the current time to the fractional value, which produces the scrolling effect.





vex_frac_rainbow_cycle_001.hiplc

v@Cd = hsvtorgb(set(frac(@elemnum/8.0)+@Time/10, 1, 1));

Loop Over All Attributes

string pt_attrs[] = detailintrinsic(1,'pointattributes');
foreach( string pt_attr; pt_attrs ) {
    if( pt_attr ~= 'attr_name*' ) {
        setpointgroup(0, pt_attr, @ptnum, 1);
    }
}

Remove Faces Across Bounding Box

if( relbbox(0,@P).x < rand(@primnum) )
    removeprim(0,@primnum,1);

Torus Knot

float u = float(@ptnum)/(@numpt-1);
u += @Time/10.0;
u %= 1.0;
u *= PI * 2;
float r = 2.0;
float q = 2;
float p = 3;
f@u = u;
@P.x += cos(u*q) * (cos(u*p)+r);
@P.y += sin(u*q) * (cos(u*p)+r);
@P.z += sin(u*p);

Make a Quad

int prim = addprim(0,'poly');
addvertex(0,prim,addpoint(0,set(0,0,0)) );
addvertex(0,prim,addpoint(0,set(1,0,0)) );
addvertex(0,prim,addpoint(0,set(1,0,1)) );
addvertex(0,prim,addpoint(0,set(0,0,1)) );

Make a Grid

for(int i = 0; i<8; i++)    {
    for(int j = 0; j<8; j++)    {
        int prim = addprim(0,'poly');
        addvertex(0,prim,addpoint(0,set(i,0,j)) );
        addvertex(0,prim,addpoint(0,set(i+1,0,j)) );
        addvertex(0,prim,addpoint(0,set(i+1,0,j+1)) );
        addvertex(0,prim,addpoint(0,set(i,0,j+1)) );
    }
}

Make a Circle

vex make circle.gif

This example shows how you can generate a circle or N sided polygon using a for loop, sin and cos.

Run the code in detail mode with an attribute wrangle.

This is essentially the same idea as the circle node but hopefully a beneficial example to see how this type of geometry is generated via VEX.

vex_make_circle_001.hiplc

int prim = addprim(0,'poly');
int seg = chi('segments');
for( int i = 0; i<seg; i++ )  {
    float u = float(i)/seg * 2*PI;
    addvertex(0, prim, addpoint(0, set(sin(u),0,cos(u))) );
}

Groups to Attribute

From zybrand

//convert numbered groups to a numbered attribute
string groups[] = detailintrinsic(0, "primitivegroups");
int prim = @primnum;
string elemnum;

foreach(string i; groups)
{
    //if the current primitive is in group i
    if(inprimgroup(0,i,prim) == 1)
    {
        elemnum = re_find(r"\d{3,6}",i);
    }
}
s@number = elemnum;


Looping Curl Noise

2022 12 11 looping curl noise.gif


It's possible to achieve seamless looping animation from curl noise by blending between two noises.

In this example one noise function is evaluated at the current time, and a second noise function is evaluated at the time shifted back by the desired loop duration.

The result of these two noise functions are blended from one to the other over the duration.




vex_looping_noises.hiplc

// Position x Frequency
vector p = @P*0.5;
// Speed
float s = 0.5;
// Loop Length (in seconds)
float l = 5;
// Time % duration
float t = (@Time%l);
// Blending
vector v0 = curlgxnoise(p + set(0,0,0,t*s));
vector v1 = curlgxnoise(p + set(0,0,0,(t-l)*s));
@P += lerp(v0,v1,frac(@Time/l)) * 0.35;